Math Sample

Using KaTeX

KaTeX can be used to generate complex math formulas server-side.

ϕ=(1+5)2=1.6180339887 \phi = \frac{(1+\sqrt{5})}{2} = 1.6180339887\cdots

Additional details can be found on GitHub or on the Wiki.

Example 1

If the text between $$ contains newlines it will rendered in display mode:

$$
f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi
$$

f(x)=f^(ξ),e2πiξx,dξ f(x) = \int_{-\infty}^\infty\hat f(\xi),e^{2 \pi i \xi x},d\xi

Example 2

$$
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
$$

​​1(ϕ5ϕ)e25π=1+e2π1+e4π1+e6π1+e8π1+ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } ​​

Example 3

$$
1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.
$$

1+q2(1q)+q6(1q)(1q2)+=j=01(1q5j+2)(1q5j+3),for q<1. 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.


See also